If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2-7u-20=0
a = 3; b = -7; c = -20;
Δ = b2-4ac
Δ = -72-4·3·(-20)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-17}{2*3}=\frac{-10}{6} =-1+2/3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+17}{2*3}=\frac{24}{6} =4 $
| 64a2=1 | | v+10=12 | | k+2–3=(6k–5) | | 2x+2+x+5+90=180 | | -3x-(-15)=6 | | 2x-5+4x=8x+7-6x | | 3w^2-8w-171=0 | | 23=6/x-32 | | 23=6/x | | (20x-150)+6x=66 | | 9x2+10=12x | | (2x-3)^4/3=256 | | 6m+2(12-3)=15 | | 7.8+11.12+x=24.31 | | -2(z+11=6 | | 3(m+2)-m=2(m+1) | | 8n=7=31 | | 15.23+18.71+x=50.35 | | 7-8n=7-8n | | 7p+2=2p-(4-2p) | | 46=6u-8 | | 1/3(x=6)=2/3(x-9) | | -15=-4m=5 | | 2(x+5)=2x+Y | | n2-4n+1=0 | | 1-5x=-7x-13 | | 144=-12(x=5) | | h=16*1(7-1) | | 4x2+20x+30=0 | | -8n-1=-15-6n | | 5y=4+10.5y | | 16-2t=3/2=9 |